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Attractive interactions between rodlike polyelectrolytes: Polarization, crystallization,
and packing
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~Received 9 December 1998; revised manuscript received 6 July 1999!

We study the attractive interactions between rodlike charged polymers in solution that appear in the presence
of multivalence counterions. The counterions condensed to the rods exhibit both a strong transversal polariza-
tion and a longitudinal crystalline arrangement. At short distances between the rods, the fraction of condensed
counterions increases, and the majority of these occupy the region between the rods, where they minimize their
repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest
for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions,
and their angular distribution around the rods. The hard-core constraint strongly suppresses longitudinal charge
fluctuations.@S1063-651X~99!13510-4#

PACS number~s!: 61.20.Qg, 61.25.Hq, 87.15.Aa
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Strongly charged polymers precipitate from a dilute so
tion into compact structures when high-valence counteri
~oppositely charged particles! are added to the solutio
@1–6#. The counterions experience strong electrostatic att
tions to the backbone of the chains, and a finite fraction
them ‘‘condense,’’ i.e., are found within a short distan
from the chains@7#. Counterions are more attracted to com
pact chains or aggregates of rodlike chains. This creates
possibility of a transition from single chains with a sma
number of condensed counterions to almost neutral ag
gates of chains, or even monomolecular collapse in the c
of flexible polymers. These aggregates are stable only w
the internal arrangement of the counterions within them p
vides a strong enough cohesive energy.

In this paper we study the attraction between two rodl
polyelectrolytes. We show that it is essential to include
size and angular degrees of freedom~around the rods! of the
counterions as well as the discrete nature of the charge a
the polyelectrolytes to find the origin and strength of t
counterion mediated attraction. Our work suggests that th
factors are also crucial in determining the collapse of flexi
and semiflexible polyelectrolytes recently studied in Re
@8–12#. Experimental observations show that the size of
precipitating particles is indeed a relevant parameter in
problem@1,6#.

It has been argued that longitudinal charge fluctuati
resulting from the thermal motion of point counterions i
duce attractions between rodlike polyelelctrolytes@13,14#,
and induces ‘‘buckling’’ of semi-flexible polyelelctrolyte
@11,12#. Here we show that such charge fluctuation are s
pressed when the hard-core volume of monomers and c
terions are taken into account. Instead, we find that the co
terion arrangement around the rods creates a non
transversal polarization as the distance between the ch
decreases. At very short distances between the rods we
strong longitudinal correlations but only at very short wav
lengths, implying a crystalline state along the rod, reinfo
ing, for the case of multivalent counterions, the attract
interactions due to polarization.

The crystalline structure of the counterions when the r
are at short distance from each other has been suggest
PRE 601063-651X/99/60~4!/4496~4!/$15.00
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simulations by Gro”nbech-Jensenet al. @15#, and was theo-
retically proposed by Arenzonet al. @16# and Shklovskii
@17#. These previous theoretical works retain some of
small size effects of a realistic system, but again use
assumption of negligibly sized counterions. These models
not reveal the polarization effects that appear when the
gular degrees of freedom around the rod are considered

The polymer chains are modeled as rigid rods formed
N repeat units, each with charge11 centered at each of th
monomers, as shown in Fig. 1. We label the pair of rodsA
and B. The diameter of the rods and the spacing betwe
charges are bothb. The total length of the chains isL5Nb.
We will only consider the case in which the chains are p
allel and separated by a distancer measured from center to
center. The counterions carry a charge2Z, and for simplic-
ity we take them to be of diameterb as well. Overall charge
neutrality of the system implies that there areN/Z counteri-
ons per chain. We assume a concentration of chainsc, to be
such that the average distance between rods~if noninteract-
ing! is alsoL, so thatc51/L3.

A layer of condensed counterions surrounds each ch
The location of a particular counterion is given by its po
tion along the rodz, a radial distancer from the rod, and its
angular positionu. We restrict thez coordinate of the con-

FIG. 1. The diameter of the rod, the size of the counterions,
the basic spacing between charges all have magnitudeb. We use
two representative states for each monomer in each rod. All oc
pation is assumed to take place parallel to the centers of the m
mers, so that the possible places for occupation form the latt
1,2,3, and 4, here shown from the top.
4496 © 1999 The American Physical Society
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densed counterions to take values coinciding with those
the centers of the monomers. The radial distance from
rod for all condensed counterions is assumed always to
the valuer 5b. The angular variable is very important, as
carries information about the local polarization of the ro
counterion system. A suitable simplification that retains t
information consists of collapsing the range of angular po
tions to only two specific locations. These positions are
cated at angles ofp/4 and23p/4 with respect to the plane
that contains both rods, and are labeled as shown in Fig
Thesead hocpositions are meant to represent locations
counterions on one rod that look toward or away from
other rod, and have the convenience of allowing us to c
sider distances between the centers of rods as small asA2b
without worrying about an overlapping of the counterio
that would require an explicit introduction of hard-core r
pulsions. The choice of angles does not significantly cha
the results. In short, we have modeled the condensed la
as four linear lattices parallel to the rods, whose sites can
occupied by the counterions.

Since our selected geometry takes care of the hard-
interactions between the particles of the system, we can
struct a Hamiltonian with only electrostatic interactions. Th
is given by

Hc5 l B(
sÞt

1

2
Z2

1

ur s2r tu
2 l B(

s
Zf~r s!. ~1!

We measure energies in units ofkBT, and the prefactorl B is
the dimensionless ratio of the Bjerrum length to the mo
mer sizee2/«bkBT, with e being the electron charge,kB the
Boltzmann constant,T the temperature, and« the dielectric
constant of water.f is the electrostatic potential created b
the charged rods. Ignoring end effects from the rods,
potential is well approximated byf(r )52l B„ln(L/rA)
1ln(L/rB)…, wherer A andr B are the distances from the poin
r to the axis of the rodsA andB, respectively. For the con
densed counterions, it is better to change to a local cha
representation. Each site of the four lattices can be occu
by one counterion~we neglect multiple occupation!, and thus
it will carry a chargeqi(n) that can be either2Z or zero.
The indexi is the is the~longitudinal! position in the lattice,
that can range from 1 toN.

Since the number of monomers is large, we expect
the total number of condensed counterions for a given in
rod separation will have a narrowly peaked probability d
tribution. We construct a free energy that assumes that
number of counterions condensed to each of the lattice
fixed, and then we will find the minimum with respect to th
occupation numbers. Latticei carries a fractionf i of the
number of counterions per rodN/Z, and the fraction con-
densed to rod A isf A5 f 11 f 2, etc.

The free counterions form a dilute charged gas t
occupies a volumeV52L(L224b2). Because of their
low density their contribution to the free energy from corr
lations and screening is negligible. A free counterion a
distancer c from the center of the system ‘‘feels’’ a potenti
given approximately by f52(l B /e)(22 f A2 f B)„1
2(r c

2/2L2)…ln(L/rc), that arises from the effective~uncom-
pensated! charge of the two rods and a cylindrical shell
uniformly distributed free counterions. Averaging this pote
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tial over the volume, and, adding the entropic contributio
we obtain the free energy per monomer due to the free co
terions:

F f5
1

2Z
~22 f A2 f B!@ ln„~22 f A2 f B!Nb3/V…21#

1
1

2
~22 f A2 f B!2S 2

3

2
l BD . ~2!

To obtain the contribution from the condensed counte
ons, we first consider a high-temperature approach in wh
we add fluctuations to a uniformly distributed state. Given
condensed fractionf i at the latticei, there aref iN/Z occu-
pied sites. The statistical sum over all states satisfying
restriction can be replaced at high temperatures by Gaus
integrations over a set of continuous local charge variab
The chargeqi(n) is represented by a densityr i(n) with
mean2 f i and variances i

25Z2( f i /Z)(12 f i /Z). This form
of the variance is consistent with our assumption of a ma
mum of one counterion per lattice site, as required by
geometry and hard-core constraints@18#. We can pass to a
discrete Fourier representation of the local charge of
form

r i~n!52 f i1 (
kÞ0

r i~k!exp~ ikn!, ~3!

where the only Fourier modes considered are of the formk
562pm/N, with m ranging from2N/2 to N/2. This trans-
formation diagonalizes the part of the Hamiltonian,@Eq. ~1!#,
that corresponds to the condensed counterions, and lea
the free energy per monomer:

Fc5
1

4 (
i , j

f iVi j
0 f j1

1

4N (
kÞ0

ln det@ I1SV~k!#

2
1

2 (
i

f if i1
1

2 (
i

f i

Z S ln
f iNb3

Vc
21D . ~4!

The first term is the contribution from the zero modes wh
the interaction matrix between lattices isVi j

0 52l B ln(L/rij),
with r i j the distance between the axis of the lattices, and
diagonal terms are given byVii

0 52l B ln(L/b). The second
term is the result of the Gaussian integration over fluct
tions, whereI is the identity matrix,S is a diagonal matrix
with entriess i

2 , and the interaction terms for the Fourie
modes are of the formsVi j (k)52l BK0(kri j ) and Vii (k)5
22l Bci(kb), with K0 the modified Bessel function, andci
the cosine integral function. The integrals that define the
agonal expressions are evaluated using the lattice spacib
as a short-distance cutoff so that there is no need for s
energy subtractions. The finite sum over modes also co
sponds to distances larger than one lattice spacing. The
term is the entropic contribution of placingf iN/Z counteri-
ons in a volumeVc5Lb2.

A posteriori, we found that at short distances between
rods the condensed counterions are almost fully polariz
occupying the states that face the other rod. The fraction
condensed charge approaches 1 in these sites, while the
ward states are almost completely depleted. We can t
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look in more detail at the calculation of the free energy
the case of almost full occupation of one of the latticesf
→1, so that the variance of the fluctuations becomess2

'(Z21). The diagonal interaction term for the highest Fo
rier modesk'6p/b is negative and of orderl B , corre-
sponding to a decrease in energy from vacating a state
to an occupied one. Since typical values forl B at room tem-
perature are always larger than 1, these diagonal terms d
nate the interaction matrixV, and therefore the matrixI
1SV has diagonal elements 12(Z21)l B . When the condi-
tion

~Z21!l B.1 ~5!

is satisfied, the matrix acquires negative eigenvalues, ma
the determinant divergent and the high-temperature appr
mation incorrect. Clearly, this occurs in most cases, exc
for monovalent counterions (Z51) or for very weakly
charged polyelectrolytes for whichl B!1. The divergence in
the determinant for multivalent counterions signals the on
of crystallization, and thus the free energy should be ca
lated on the basis of a dominant crystalline ground st
Once we use the correct ground state for both monovale
and multivalence cases, it can be shown that the correct
from fluctuations are very small; that is, the contribution
the determinant in Eq.~4! becomes negligible once the d
vergent modes are subtracted.

The condition established in Eq.~5! is valid for the geom-
etry considered here, in which all small length scales
comparable to each other. If the rods are considera
thicker, the condition will take the~approximate! form (Z
21)l B„2b/(D1b)….1, with D the diameter of the rods.

The proper ground state for each of the inner lattic
when approaching full condensation, is clearly given by
arrangement in which counterions are placed one in eveZ
sites. ~This is the case already forZ51.! As the rods ap-
proach each other, the inner lattices interact strongly,
they do not destroy the ground state arrangement. Inst
they can choose a location of the occupied sites, so a
minimize their repulsive interaction. ForZ52, for example,
one expects one of the internal lattices to be filled in the e
sites, while the second is filled in the odd ones.

The calculation of the free energy for the multivalen
case can be carried out using the results for the monova
case, which are given by Eq.~4!. We simply renormalize the
lattice spacing toZb, and reduce the available sites by
factor of Z. The elements of the interaction matrix for th

FIG. 2. Results of the minimization of the free energy, for p
rameters such thatl B54.1, for valencesZ51,2, and 3. Energies ar
shown in units ofkBT and distances in units ofb. The zero of the
energy in each case is chosen to match the energy at large se
tions.
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ground states are now given byVi j
m52l B ln(L/rij8), with a

modified distance between the latticesr i j8 5„r i j
2 1(bZ/2)2

…

1/2

that takes into account the mismatch between the occu
sites in the lattices. The diagonal term is simplyVii

m

52l B ln(L/Zb).
The results presented in Figs. 2–4 are based in

ground-state approximation, but a simple estimate can
made for the size of the corrections to the free energy aris
from fluctuations. Consider, for example, theZ52 case. The
more important fluctuations around the ground state are
displacements of counterions in a direction longitudinal
the rod. While the full ‘‘phonon’’ spectrum can be calculate
for this structure, it is simpler, as a first approximation,
consider independent displacements of the counterion
one site up or down in the rod~a distanceb apart!. A jump to
a neighbor vacant place changes the the energy of interac
with its nearest counterion neighbors by an amount ofDE
5 4

3 l B ~given f '1). Assuming that a counterion can on
occupy its original position and the two empty neighbori
sites, we obtain a free energy contribution from theseN in-
dependent fluctuating modes, per monomer, in units ofkBT,
of Ffluct52 ln(112e2DE)'522e2DE. This correction is
small for the values of parameters we consider.

In Fig. 2 we present the calculated free energy of
system as a function of the distance between rods. The
merical values for the constants of the system areT5300
andb51.8 Å, so thatl B54.1 andN5105. There is a well of
attraction for the mono-valent case of about 0.5 kT, which

-

ara-

FIG. 3. The total fraction of condensed counterions to each
the rods, as a function of the separation between rods for vale
Z51,2, and 3. The scale in which the condensed fraction decay
a single rod value is of the order of the size of the rodL5105b.
Note the change of scale with respect to Fig. 2.

FIG. 4. Polarization of the rods as a function of the separat
between rods for valencesZ51,2, and 3. At very short distances
the polarization is almost complete. Away from the region of stro
attraction, the polarization still remains important, and will decay
zero only at distances of orderL. The plots forZ52 and 3 overlap
almost completely.
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not enough to bind the rods, and further, the local minim
at short distances turns out to be of higher energy than
self-energy of two rods separated by a distanceL. For Z
52 and 3, the depth of the well is of the order ofkBT, and
the energy there is lower than their respective refere
states.

Figure 3 presents the total amount of condensed cou
rions for one of the rods,f A5 f 11 f 2. This is always very
close to 1 for short distances, and reaches a value nea
Manning limit @7#, f 5(121/ZlB) at large separations. W
measure the overall polarizationp of the rods by the ratio of
the difference between the occupation of the inward and
ward positions to the total amount of condensed charg
thus, for rodA,

pA5
f 22 f 1

f 21 f 1
. ~6!

Results for the amount of polarization are shown in Fig. 4
is clear that the charge will be perfectly balanced when
presence of the second rod is not felt. On the other ha
when the chains are in close contact it is natural for
counterions that occupy the inner sites to be able to inte
with the positive charges of both rods, even at the expens
.
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interacting with other condensed counterions. What it is s
prising is that both the polarization and the extra conden
tion do not decay quickly, and it is necessary to set the d
tance between the rods to its maximum valueL to recover
the Manning limit and a symmetric state. A good test of t
validity of this theory will be the measurement in simulatio
and experiments of the transversal polarization of the rod

In summary, we have shown that the interaction betwe
two charged rodlike polymers generates a strong transve
polarization of their condensed charges, and that at s
distances the two rods are strongly driven toward hig
counterion condensation. This forces the counterions to c
tallize, and then to organize their respective crystals int
packing structure. The final result is an important attract
between the rods when the counterions are multivalent.
found that the finite size of the counterions and their angu
degrees of freedom are essential to determine the nature
strength of the counterion-mediated attractions in rigid ro
and we expect this also to be the case in flexible and se
flexible polyelectrolytes.
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